
ECE 434 Introduction to Computer Systems
Maria Striki Rutgers University Spring 2019

Project 3: 04-15-2019
Synchronization and User Level Threads: (60 = 30 + 30) points

Issue Date: Monday April 15th, Due Date: Saturday May 4th, 13.00

PART 1 (30 points)

In this project you are expected to implement your own thread library. Through your involvement you

will gain experience with multi-threaded systems.

User Level Thread Library
For this part you will implement a cooperative User Level Thread (ULT) library for Linux that can

replace the default PThreads libary. Cooperative user level threading is conceptually similar to a concept

known as coroutines, in which a programming language provides a facility for switching execution

between different contexts, each of which has its own independent stack. A very simple program using

coroutines might look like this:

void coroutine1()

{

// Some work

yield(coroutine2);

}

void coroutine2()

{

// Some different work

if (!done)

 yield(coroutine1);

}

int main()

{

coroutine1();

}

 Note that cooperative threading is fundamentally different than the preemptive threading done by many

modern operating systems in that every thread must yield in order for another thread to be scheduled.

1.1 Basic User Level Thread Library
Write a non-preemptive cooperative user-level thread (ULT) library that operates similarly to the Linux

pthreads library, implementing the following functions:

 mypthread_create

 mypthread_exit

 mypthread_yield

 mypthread_join

Please note that we are prefixing the typical function names with ”my” to avoid conflicts with the

standard library. In this ULT model one thread yields control of the processor when one of the following

conditions is true:

 thread exits by calling mypthread_exit

 thread explicitly yields by calling mypthread_yield

 thread waits for another thread to terminate by calling mypthread_join

You should use the functionality provided by the Linux functions setcontext(), getcontext(), and

swapcontext() in order to implement your thread library. See the Linux manual pages for details about

using these functions. These functions allow you to get the current execution context, make new

execution contexts, and swap the currently running context with one that was stored.

So, what is a context? It is related to context switches—when one process (or thread) is interrupted and

control is given to another. It’s called a context switch because you are changing the current execution

context (the registers, the stack, and program counter) for another. We could do this from scratch, using

inline assembly, but the getcontext, makecontext, and swapcontext functions make it much simpler.

For example, when getcontext is called, it saves the current execution context in a struct of type

ucontext_t. The man page for getcontext describes the elements of this struct. Some of these elements are

machine dependent and you don’t have to worry about the majority of them. They may include the current

state of CPU registers, a signal mask that defines which signals should be responded to, and of course, the

call stack. The call stack is the one element of this struct that you will need to pay some attention to.

The current context must be saved first using getcontext (the new thread’s context is based on the saved

context). Space for a new stack must be allocated, and the size recorded. Finally, makecontext modifies

the saved context, so that when it is activated, it will call a specific function, with the specified arguments.

The newly created context is then activated with either a call to setcontext or swapcontext. The former

(setcontext) replaces the current context with a stored context. When successful, a call to setcontext does

not return (it begins running in the new context). A call to swapcontext is similar to setcontext, except that

it saves the context that was running (a useful thing to do, if you later want to resume the old context

later). A successful call to swapcontext also does not return immediately, but it may return later, when the

thread that was saved is swapped back in. You probably want to store your thread contexts on the heap.

1.2 Requirements
We will provide a test program (mtsort.c), and simple template (mythread.h). You may not modify the

test program, so your library must provide exactly the API that we specify. You should implement all of

your code in the provided files mypthread.h, and mypthread.c.

1.3 Coding and Submission Instructions

Coding
For this assignment, you should NOT have to create any other files, simply do your implementation in

these existing files (use mythread.c, mythread.h, mtsort.c). Either provide a ReadMe file with instructions

how to run this program or generate your own makefile.

Implementation
We provide a mypthread.h that defines the required API. You will need to make changes to the types

defined here, but do not change the function call API. You will implement your library in mypthread.c.

Once you complete your implementation, you may test it using the test program provided. The test

program is implemented in mtsort.c.

Submission
Only one group member should submit the project, but the names of all group members should be entered

into the text field on the Sakai submission, and should also appear on the report. A detailed report on

justification of your coding and discussion is expected for your project to be complete.

PART 2 (30 points): Solving a Synchronization Problem

For Part 2 you are required to provide a synchronization scheme for the: “Kindergarten” Problem.

Regulations require that one teacher per R children is always present (e.g., child/teacher ratio 3: 1) to

ensure proper supervision of children. Moreover, your configuration should have the following

characteristics:

1. If a teacher attempts to leave but this is not possible, he should return in office (but NOT BLOCK

while waiting for the exit condition to be met).

2. Every parent should be able to enter the kindergarten area to verify whether the regulation is met.

The children, the teachers, the parents are simulated with three sort of threads TC, TT, and TP, and each

thread type executes the following code:

Provide the synchronized processes: Teacher, Children, Parents, which satisfy the requirements above, by

further defining functions:_enter(), _exit(), verify_compliance() shown below, or by replacing

the latter functions with the proper synchronization code within: Teacher(), Child(), Parent(). You

will also simulate functions: teach(), learn(), verify_compliance() as follows: either apply a

for loop or a sleep function with an argument that will be varied during your experiments, and/or combine

a sleep function with an actual check to verify compliance.

You are asked to implement the scheme above following two distinct synchronization strategies:

1) Use mutexes/locks, shared variables, and Semaphores only

2) Use mutexes/locks, shared variables, and Condition Variables only.

Your goal is to study which of the above strategies implements the defined framework without any

problems. It may be one of the two or both. After your experiments and your theoretical study of both

implementation report which strategy provides the correct or optimal implementation and why.

You will create N threads in total where N: a) 15, b) 100, c) 1,000 (experiment will all three values).

You are allowed to create N1 teachers, N2 children, and N3 parents, as long as N = N1 + N2 + N3.

In your experiments and tests you will be varying N1, N2, and N3 and test for combinations that work

and for combinations that do not work. You should also vary the intermediate waiting times (e.g., in the

sleep calls you will be using) and take notice if the value of the argument plays a role in the experiment or

not. You will execute your program under any combinations, observe the results, use the proper printouts

and you will document experiment results in your report.

NOTE: In your program you must pass variables: N, N1, N2, and R as arguments.

Questions:

Q1: (5 pts) As you are building your optimal synchronization strategy(ies) also study and observe how

the lack of proper synchronization across threads can lead to disastrous results. Experiment with varying

the initial parameters such as: N = 12, N2 = 7, N1 = 3, N3 =2, R = 2 or R = 3. This is just an example.

Use more such sets of values. Observe the results, document them with printouts, print-screens, and your

report. Also, justify analytically/theoretically such results.

Q2: (18 pts) Implement both strategies described (1. Only semaphores, 2. Only condition variables) and

provide your code, your experiment sets, and the results of your implementation for both strategies, as

described in the introduction above. Also, use some timer function and time the execution with both

strategies. If both strategies give you correct results then discuss their optimality and superior

performance, based on the following parameters: 1) complexity of code, 2) time of execution (you may

run your code for larger N to observe timing differences in both executions: e.g., N = 10,000 or

1,000,000).

Q3: (7 pts) Study your synchronization schemes and your results in theory and justify them: comment if

they are the expected results. Towards this direction, you should first investigate if your strategies have

correct functionality and outcome – for example whether they lead to deadlock or not – for any sequence

of execution across threads (with context switching).

Solution:

What to turn in:
 C files for each problem
 A makefile in order to run your programs.
 Input text file (your test case)
 Output text file (for your test case)
 Report: Explain design decisions. Also, please consider providing a very detailed report,

as along with your C file deliverables, it corresponds to a substantial portion of your
grade.

Logistics:
 For Project 3 please work in groups of 4-5 students.
 You are expected to work on this project using LINUX OS
 Make ONE submission per group. In this submission provide a table of contribution for

each member that worked on this project.
 Only students that may be left without peers will be allowed to work in groups of 2 or 3.
 Do not collaborate with other groups. Groups that have copied from each other will

BOTH get zero points for this project no matter which copied from another, and will also
incur more substantial consequences.

